合理构建Borromean键合的结晶有机聚合物

由于独特、复杂拓扑结构和优美的外观,Borromean系统引起了广泛的关注。然而,目前合理构建Borromean键合有机聚合物仍然充满挑战。

南开大学张振杰研究团队开发了一种合理构建Borromean键合的结晶有机聚合物的方法。 相关论文发表在2020年11月19日出版的《德国应用化学》。

DOI: 10.1002/anie.202012504

为了应对这一艰巨的挑战,研究组开发了一种超分子-Synthon驱动的方法来构建Borromean键合有机聚合物通过精选的三角锥体构筑块1,3,5-三(4-氨基苯基)金刚烷与线性双醛构筑块的溶剂热缩合反应,研究人员成功构建了罕见的具有高结晶度和优异稳定性的共价有机骨架(COFs)。结构的精细化揭示了二维Borromean阵列结构的成功形成。两种COFs均具有微孔结构,显示出在气体分离方面的潜在应用。

Issue&Volume: 19 November 2020

官方网址:https://onlinelibrary.wiley.com/journal/15213773

Abstract: Attributed to the unique topological complexity and elegant beauty, Borromean systems are attracting intense attention. However, at present, the construction of Borromean linked organic polymers remains a challenge. To address this formidable challenge, we developed a supramolecular‐synthon‐driven approach to fabricate Borromean linked organic polymer. The solvothermal condensation reaction of a judiciously selected trigonal pyramidal building block, 1,3,5‐Tris(4‐aminophenyl)adamantane, with linear dialdehyde building blocks allowed the construction of two rare covalent organic frameworks (COFs) with high crystallinity and robustness. Structure refinement unveiled the successful formation of entangled 2D2D Borromean arrayed structures. Both the two COFs were of microporosity and thus demonstrated the potentials for gas separation. The successful synthesis of the first two Borromean linked organic polymers paves the avenue to expand the supramolecular‐synthon‐driven approach to other building blocks and topologies, and broadens the family and scope of COFs.

Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:12.959

Author: Xiuxiu Guo, En Lin, Jia Gao, Tianhui Mao, Dong Yan, Peng Cheng, Yao Chen, Shengqian Ma, Zhenjie Zhang

前两种Borromean键合有机聚合物的成功合成为将超分子合成驱动方法扩展到其他构建块和拓扑结构铺平了道路,并拓宽了COFs的种类和范围。

投稿链接:https://www.editorialmanager.com/anie/default.aspx

Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202012504

本期文章:《德国应用化学》:Online/在线发表

Title: Rational Construction of Borromean Linked Crystalline Organic Polymers

期刊信息

附:英文原文

热门标签: 苹果   设备   电子   用于   技术   沉积   气相   高级   申请   元器  

友情链接: